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A remarkably successful empirical equation for the evaluation 
of the lattice energies of binary ionic crystals has been developed 
by Kapustinskii’ and extended by himself and Yatsimirskii.2 
This equation was based on the Bom-Land6 or (more reliably) 
the Bom-Mayer equation for a 1 : 1 system of charges, consist- 
ing of a coulomb attractive term and an overlap repulsive term: 

u=--(1-;) A h 2  Z+Z- 
4m, ro 

Here A = Madelung constant for the crystal lattice, L = 
Avogadro’s constant, e = electronic charge, z+, z- = cation, 
anion charges in electron units, r, = center-to-center spacing 
of ions = r+ + r- = sum of cation and anion radii, Q = 
“softness” parameter. Kapustinskii’s insight was to note that 
Aln (where n = sum of ions per formula unit) is approximately 
constant for a number of crystal structures, and that ( A h , )  is 
even less variable. Hence, it becomes possible to replace the 
factor (Alnr,) for any binary (not necessarily 1 : 1) ionic structure 
by the corresponding value for the six-coordinate sodium 
chloride structure, while using the six-coordinate values for the 
actual ion radii, r+ and r-. This substitution yields 

where Q = 0.345 8, is chosen as a representative value for the 
alkali metal NaC1-type structures, and B = (2427.8/2) kT 8, 
mol-’ (where the divisor 2 compensates for the introduced 
factor, n). 

This equation provides excellent estimates of lattice ene rg ie~~-~  
in conjunction with Goldschmidt ionic radii3 often to better 
than 5% of the experimental value but generally on the low 
side.5 Among the most significant uses of lattice energy 
estimation was in the prediction by Bartlett6 of the stability of 
the xenon complex, XePtF6. The Kapustinskii concept has also 
been extended to complex salts, treated as binary systems, by 
assigning notional “thermochemical radii” to complex ions, such 
as ~ulfate.~.~,’  

There are two principal problems with the Kapustinskii 
equation. First, r, is simply treated as the sum of cation and 
anion radii without consideration of structural details5 such as 
noncontact of the ions. Second, the form of the equation does 
not permit extension to mixed ion systems, such as Ca2Fe205 
or Fe304 (which contains Fe2+, Fe3+, and 02- ions); this second 
restriction does not seem to have been commented on before. 
The following generalization of the Kapustinskii equation 
overcomes the second problem. 
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A quantity characterizing the interactions among a system 
of charges is the sum 

n 

Czi z j  
i>j  

where n = number of charges in the system. If we deal with 
a neutral chemical formula unit, for example, &,,Bn,X3Yn,-with 
obvious generalizations-having corresponding ionic charges, 
z1, 22, ..., then it is possible to count and sum the various 
interaction terms, to yield the result 

n 

(3) 
i > j  k 

where t = number of types of ion in the formula unit, each of 
number, ilk, and charge zk. 

It may be noted that the term on the right corresponds to the 
negative of the ionic strength, I ;  the ionic strength is a standard 
quantity in electrochemical (but not usually acknowl- 
edged in solid-state theory) and is a measure of the intensity of 
the electrical field due to the set of ions.9 Equation 3 seems 
not to have previously been noted. further, for a neutral binary 
ionic system, A,+X,-, eq 3 simplifies as follows: 

(4) 

This is exactly the term introduced into the Bom-Mayer 
equation by Kapustinskii and has the necessary property of 
proportionality to the size of the formula unit. This suggests 
substitution of the ionic strength expression for the Kapustinskii 
term, to yield the generalized equation 

where ( r )  = weighted mean ion radius sum. 
The mean radius sum which must be used in eq 5 is rather 

nebulous, and it might be expected to include terms for all the 
(unknown, in principle) actual ion-ion distances. Experimenta- 
tion with various possibilities, such as the mean radius sum 
(including cation-anion, cation-cation, and anion-anion terms), 
a weighted mean radius sum, and weighted mean cation-anion 
radius sum, have shown the last to be the only reliable measure. 
The weighting consists of the number of each kind of cation- 
anion pair (for example, in MgAl204 there are four Mg-0 pairs 
and eight A1-0 pairs). The following results are based on this 
last measure. 

For binary systems, the generalized form of the equation is 
identical to the Kapustinskii form. Therefore, Table 1 provides 
a test of the generalized equation beyond binary systems, using 
the Ti-0 series, which (except for TiO) we have recently 
studied by crystal structure modeling techniques using the 
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Table 1. Evaluation of Lattice Energy Predictions 
ionic strength, lattice energykJ mol-' 

Ti-0 series (r)./A I =  - 1 1  2Znkzk2 predicted, - UK (eq 5) modeled,b - U,v lit.,c UL (UK - UM/L!JM)/% 

T i 0  2.12 -4 3835 3832 

TiO2: rutile 1.96 -12 
anatase 
brookite 
Ti02(II) 

Ti203 2.01 -15 

Ti3Os: low temp 1.99 -27 

Ti407 1.99 -39 
high temp 

(38 10-401 3) 
12248 11830 12150 

11860 (10163- I235 1) 
1 1820 
11810 

15008 14820 14702 

27193 26580 
26560 (24594) 

38409 38490 35445d 

(14258- 14990) 

3.5 

1.3 

2.3 

.0.2 

( r )  = weighted mean cation-anion radius sum (using Goldschmidt radii)3, for use in the generalized Kapustinskii equation, (5). Modeling of 
structures in Ti-0 series by H. le Roux and L. Glasser: details to be published. Jenkins, H. D. B. in Handbook of Chemistry and Physics, 73 ed.; 
Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 1992. Ranges in parentheses were provided in a personal communication by H. D. B. Jenkins 
(Warwick). Data from ref 11. 

program WMIN,Io generating lattice energies in the process. 
The model we use consists of a "shell" model for the oxide 
ion, repulsive terms for Ti4+-02- and Ti3+-02- (the latter over 
two ranges to allow for ferroelectric interactions), together with 
a coulomb sum for the ions (including an Ewald summation to 
accelerate convergence). The potential parameters, which have 
been simultaneously optimised over the full set of structures, 
yield relaxed unit cell volumes within 2% of the experimental 
values for all the structures, while all lattice constants lie within 
4% of the experimental values. Details of these calculations 
will be published in due course. 

As can be seen in Table 1, the generalized equation (using 
Goldschmidt 6-coordinate radii and the NaC1-type Madelung 
constant) yields excellent agreement with the modeled results; 
the generally larger Pauling radii are not as successful. (Of 
course, the Kapustinskii equations cannot distinguish among 
polymorphs .) 

It now becomes possible to predict the lattice energies of a 
host of ionic structures containing multiple ionic species. We 
report in Table 2 on a series of temary oxides recently modeled 
by Bush et a1.,I2 who have developed a consistent set of pair 
potentials for a large group of binary and ternary oxides, also 
yielding lattice energies. Table 2 shows that the generalized 
Kapustinskii equation successfully predicts these results, with 
very little error. 

Table 2 also reports some predictions for iron oxides, which 
match the literature values rather well. On this basis, we predict 
in Table 2 the lattice energy of Fe304-which does not appear 
in the literature. 
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Table 2. Lattice Enerev Predictions for Comolex Oxides 

lattice energykT mol-' 
ionic strength, predicted, modeled,b (UK - UM/ ternary 

oxides (r)"/A I = - ' / 2hzk2 - UK (eq 5) - UM L!JM)/% 

Ca~Fe2Os 2.19 -23 21521 21811 -1.3 
MgA1204 1.96 - 19 19392 19269 0.6 
LA103 2.22 - 15 13880 13856 0.2 
NdFeO3 2.23 - 15 13804 13856 -0.4 
Y3Fe5012 2.14 - 60 57176 56504 1.2 
Y3A15012 2.07 - 60 58558 58006 1 .0 

lattice enerevkT mol-' 

iron ionic strength, predicted, (UK - Ud 
oxides (r)"/A I = -'/2&kzk2 -UK (eq 5 )  lit.,< UL U,M)/% 
FeO 2.14 -4 3806 3795 0.3 

Fe2O.i 1.99 - 15 15127 14309 5.7 

Fe204 2.04 - 19 18788 

(3849-3988) 

(15121-15361) 

(i ( r )  = weighted mean cation-anion radius sum (using Goldschmidt 
radii)3, for use in the generalized Kapustinskii equation, (5). Data from 
ref 12. Jenkins, H. D. B. in Handbook of Chemisrry and Physics, 73 
ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 1992. Ranges in 
parentheses were provided in a personal communication by H. D. B. 
Jenkins (Warwick). 

In summary, the newly-generalized Kapustinskii equation, (3, 
provides a means of predicting, within a few percent, lattice 
energies of crystals containing multiple ions based on their ionic 
radii or using thermochemical radii for complex ions. 
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